Multi-Agent Learning Methods in an Uncertain Environment
نویسندگان
چکیده
Learning in multi-agent environments constitutes a research and application area whose importance is broadly acknowledged in artificial intelligence. There is a rapidly growing body of literature on multi-agent learning. In this paper, the multi-agent learning methods in an uncertain environment are addressed. The presented methods are not exhaustive, but they highlight the major methods used by researchers in past years. keywords: multi-agent learning, reinforcement learning, Profit-sharing , MDP
منابع مشابه
A multi agent method for cell formation with uncertain situation, based on information theory
This paper assumes the cell formation problem as a distributed decision network. It proposes an approach based on application and extension of information theory concepts, in order to analyze informational complexity in an agent- based system, due to interdependence between agents. Based on this approach, new quantitative concepts and definitions are proposed in order to measure the amount of t...
متن کاملImproving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملLearning to Play Soccer with the SimpleSoccer Robot Soccer Simulator
The RoboCup simulated soccer league (RoboCupSoccer) is an important and useful tool for multi-agent and machine learning research which provides a distributed, multi-agent environment in which agents have an incomplete and uncertain world view (Kitano et al., 1995; Kitano et al., 1997). The RoboCupSoccer state-space is extremely large, and the agent perception and action cycles in the RoboCupSo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002